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Summary. Estimation of the number of segregating genes 
affecting a quantitative trait in populations initiated from 
a cross of two homozygous lines is considered. Experi- 
mental data, for the trait in question, is assumed available 
on total response to recurrent selection initiated in the 
F: or F3 generation, the initial additive genetic variance and 
the heterosis exhibited in the F1 generation. Appropriate 
procedures when multiplicative genetic effects are assumed 
are developed and reasons for assuming multiplicative 
rather than additive effects are indicated. These procedures 
were employed to estimate the number of genes affecting 
pupa weight in a population of flour beetles and growth 
in a population of mice. Estimates were 50-60 percent 
smaller than those obtained using familiar estimation pro- 
cedures appropriate when no epistasis is assumed. How- 
ever, the estimated numbers (about 200 and 100 for pupa 
weight and mouse growth, respectively) were still rather 
large. 

Key words: Gene number estimation - Multiplicative gen- 
etic effects - Gene numbers - Pupa weight - Growth of 
mice. 

The multiple factor hypothesis concerning the genetic 
variation of quantitative traits had become well established 
by 1920 and from 1910 to the present geneticists and 
breeders have been actively interested in the numbers of 
genes that contribute to the population variances of 
quantitative traits. More recently, Comstock (1973, 1977, 
1978) has emphasized the importance of this issue with 
respect to good decisions concerning effective population 
size in breeding programs. 
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The primary bases for inference concerning number of 
genes that affect a quantitative trait are cytogenetic or 
statistical. In the first case, the basis is the number of 
chromosome regions in which one or more genes affecting 
a trait can be shown to be present. In the second, the 
bases are genetic variance and evidence concerning the 
genetic extremes of the trait; the nature of gene effects is 
then an obvious issue. 

The first statistical procedure, outlined by Castle 
(1921) who acknowledged advice from Sewall Wright, is 
widely known as the Castle-Wright formula. The numeric- 
al quantities required are estimates of (1)the genetic effect 
of changing the frequencies of all alleles favorable to the 
trait from 0.0 to 1.0 and (2) the genetic variance when 
allele frequencies are all equal to 0.5. Variations of the 
Castle-Wright procedure have been discussed by Wright 
(1952, 1968), Falconer (1960), Comstock (1969) and 
Park (1977). All of them assume that the effects of single 
locus genotypes are all additive, i.e., that there is no epis- 
tasis. 

Data obtained in selection experiments described by 
Rahnefeld et al. (1963) and Enfield et al. (1966) were in 
some respects more compatible with the multiplicative 
than with the additive effect model. The estimation proce- 
dure described herein, was therefore devised and em- 
ployed. 

Alternatively, we could have analyzed logarithms of 
the original data but that would have (1) required a rather 
large amount of work that was avoided by using statistics 
already computed from the non-transformed data and (2) 
entailed the assumption that non-genetic, as well as gen- 
etic, effects were multiplicative. 

In addition to setting out the theory base for the esti- 
mation procedure when multiplicative genetic effects are 
assumed, this paper will compare estimates by different 
procedures using parameter estimates obtained in the se- 
lection experiments referred to above. 
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The Experimental Data 

As described by Rahnefeld et al (1963) and Enfield et al. 
(1966) our data were obtained as follows. Two long in- 
bred lines were crossed. The performance of  the F1 was 
compared with that o f  the parent lines. F1 individuals 
were mated inter se to provide an F2 and random F2 in- 
dividuals were mated to produce the F3 generation. There- 
after selection among individuals was practiced in each 
generation, the selected animals being animals mated ran- 
domly (except for avoidance o f  full-sib matings) to pro- 
duce the following generation. Selection was for high pupa 
weight in the case of  flour beetles and high post-weaning 
(18-42 day) weight gain in the case o f  mice and was con- 
tinued until it had become clear that plateaus had been 
reached. 

Non-additive genetic effects were indicated by the fol- 
lowing consequences o f  the recurrent selection. 

(1) In both experiments the total response to selec- 
tion was greater than the original average for the selected 
trait (Table 1). This indicates either non-additive genetic 
effects or alternatively, if effects are additive, that individ- 
uals homozygous for large proportions of  the unfavorable 
alleles do not survive or do not reproduce. 

(2) Additive genetic variance increased through one- 
half or more of  the time required to reach plateaus. This 
was indicated in both experiments by constant or increas- 
ing responses per generation o f  selection through many 
generations despite concurrent increases in phenotypic 
variance. It was confirmed in the flour beetle experiment 
by the averages o f  statistical estimates o f  the additive gen- 
etic variance. In successive 36 generation intervals those 
estimates were 21,947; 34,678 and 36,715. These trends 
as the frequencies of  favorable alleles were increased from 
0.5 (the necessary initial values in a population from the 
cross of  two pure lines) could result from gradual dissipa- 
tion of  an original excess of  repulsion phase linkage dis- 
equilibrium or from dominance o f  unfavorable alleles in- 
stead of  from epistasis. However, dominance of  unfavor- 
able alleles was contraindicated by the observation of  
some heterosis in the F 1 generation (Table 1). 

While the results listed above are doubtful in the ab- 

sence of  epistasis, they are, as shown later, expected con- 
comrnitants of  the multiplicative model. 

Table 1 lists the parameter estimates from our experi- 
mental data that were used in computing the gene number 
estimates reported in Table 2. The parameters are symbo- 
lized as follows both in Table 1 and elsewhere in the manu- 
script. 

2 %0 = the additive genetic variance in a linkage equilibrium 
population in which allele frequencies are 0.5 for all 
genes that were heterozygous in the F 1, 

Yo = the genotypic mean of  such a population (it was es- 
timated, of  course, in terms of  F 2 and F3 perfor- 
mance), 

Ym = the genotypic mean of  a population in which the 
favorable allele is homozygous for all genes that were 
heterozygous in the F 1, 

F ] ,  P] andP2 = the mean performance of  the FI and par- 
ent lines 1 and 2, respectively, 

Table 1. Parameter estimates (the measurement units were micro- 
grams for pupa weight and grams for weight gain) 

Trait Parameter a Population b Estimate 

Pupa weight T o S~ 2459 
(flour beetles) $2 2412 

CLm $1 5745 
Sa 5537 
H~ 5952 
H a 5866 

Weight gain 
(mice) 

a~o 
Ha 
a m  
Yo 

%o 
Ha 
Hm 

2436 

5640 

5909 

13,360 
251 

1.12 
11.00 

22.60 
0.33-0.48 

1.80 
1.20 

n The meanings of symbols in this column are provided in the first 
~aragraph of 'The experimental data' 

S~ and $2 were replicate populations initiated from the same 
F 2 population. H~ and H 2 were replicate populations initiated 
from the F~ of the cross between S~ and $2 made after 72 gene- 
rations of selection in S~ and $2 

Table 2. Gene number estimates 

Pupa weight (Flour beetles) Weight gain (Mice) 

Assumptions L • ^2 Ym = 5640 Ym = 5909 Og o = 0.33 

No epistasis 415 
No epistasis, no dominance 384 
Mult. genetic effects 180 
Mult. genetic effects, ma = (m 2 + 1)/2 158 
Mult. genetic effects, m 2 = ma 2 157 

ego = 0.48 

485 237 163 
451 204 140 
197 119 81 
175 96 67 
174 95 66 
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Ha = FI -,.~L_+ P2)/2, and 
Hm = FI/x/PIP2. 

The estimates of Ym in the case of flour beetles were 
averages of pupa weight in cycles 111-130 of the experi- 
ment. The estimate of Ym for mice was the average 18-40 
day weight gain during cycles 47-60 of the mouse experi- 
ment. In both species the populations had apparently pla- 
teaued prior to the period used to measure Ym. In the 
case of the beetles additive variance had not been exhaust- 

2 ed and thus V/m was underestimated. The estimate of %0 
for pupa weight was an average of estimates based on sire 
components of variance and parent-offspring regressions 
using data from the $1, the $2 and replicate control pop- 
ulations in the first 12 cycles of the experiment. There 
were 72 full-sib families (two by each of 36 male parents) 
in each of the four populations in each generation. Sire 
components, parent-offspring regressions and realized her- 

2 itabilities were used to establish the range of %0 in the 
mouse experiment. Data from the first 18 generations 
were employed. The highest of the estimates cited by 
Comstock (1969) was not employed because it was ob- 
tained from results in generations 28-36 when additive 
genetic variance had obviously increased. 

Theory Base for the Multiplicative Model 

Assume two alleles per segregating locus (because our con- 
cern is with populations generated from the cross of  two 
pure lines) and let 
G~ symbolize genotype for the i-th gene where k (= 0, 1 

or 2) is the number of favorable alleles in that single- 
locus genotype. 

m~ be the multiplicative effect of Gik, 
fi~ be the frequency of G~ and 
K be a row vector that specifies the number of favor- 

able alleles for each of n genes in any total genotype. 
Then, using K as a subscript to specify individual total 
genotypes, 

YK = aOmik (1) 
1 

where rl. mik signifies the product of the entire series ofm's 
1 

(mlk through mnk, the values of k for successive genes be- 
ing given by K), mio = 1.0 for all genes and t~ is the value 
of the genotype that is homozygous for the unfavorable 
allele of all genes that were heterozygous in the Ft and 
the same as the parent lines for all other genes. 

Assuming no correlations of genotypes between loci 
(linkage equilibrium), the frequency distribution of total 
genotypes is given by expansion of the product 

.[I(fi2Gi2 + f i lGil  + fioGio) 
1 

and substituting m's for G's, remembering that mi0 = 1.0 
for all loci, 

V/= Hi (fi2mi 2 + filmil + fio) (2) 

m 

where Y is the population mean of genotypic values. 
To obtain the additive genetic variance contributed by 

any single gene, say the j-th, we require 
BB i = the average value of all genotypes that are homozyg- 

ous (BB) for the favorable allele of the j-th gene. 
the average value of all genotypes that are Bb for 
the j-th gene and 
the average value of all genotypes that are homozyg- 
ous for the unfavorable allele of the j-th gene. 
Eqs. (1) and (2) it is apparent that 

Bb i = 

bbj = 

From 

BBj = mj2Zja ] 

Bbj = mj 1 Zja 

and 

bbj = mjoZjol = Zjot 

where 

Zj = i IIj (fi2mi2 + filmil + fiomio) 

(3) 

(4) 

Here II signifies the product of the whole series of values 
i~j 

except the one for the j-th gene itself. Then using symbols 
defined by Comstock and Robinson (1948) and remem- 
bering that mio = 1.0 

uj = 1/2(BBj - bbj) = 1/2(mj2 - 1)Zja 

aj = (2Bbj - BBj - bbj)/(aBj - bbj) 

= (2mjt - mj2 - 1)/(mj2 - 1) 

and 

2 =  j~ 2 Og a ~  = .~ 2qj(1 - qj)[1 + (1 - 2qj)aj l~u~ 
l 

= ~ 2qj(1 - qi)[mjt - 1 - qj(2mj~ - mj2 - 1)]2Z~a 2 
J 

(s) 

Here j is used to identify gene because Zj is defined for 
the j-th (not the i-th) gene and qj is the frequency of the 
favorable allele of the j-th gene. 

As when no epistasis is assumed, genetic effects are as- 
sumed equal for all genes for the purposes of gene number 
estimation. Then, from Eq. (1) 

VIm = ~m~ (6) 

and from Eq. (2), remembering that VI o is defined for a 
population in which allele frequencies at segregating loci 
are 0.5 so that fi2, fil and fio are 1/4, 1/2 and 1/4, respec- 
tively, 
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E m 2 * 2ml * 1. (7) 
Y~ = ~ 4 

2 Next, from Eq. (4) and (5) and the fact that og o is def'med 
for a population in which aUele frequencies at segregating 
loci are 0.5, 

2 n ~ m ~ ] 2  fm2 + 2m~ + 1.12(n - 1) 
~176 = "2 4 ~ (8) 

It remains to obtain an expression for H m. Because all 
gene loci at which different alleles are homozygous in the 
pure line parents will be heterozygous in the F~ genera- 
tion, we have from Eq. (1) 

n 
F1 =offa  1 

Going on to the quantity PIP2, if nl genes are homozyg- 
ous for the favorable allele in line 1 and n2 in line 2, 

ni + n 2  = n  

P I  = a ( m 2 )  nl P2 = a ( m 2  ) n2 

and 

P1P2 2 n =Or m 2 . 

It follows that 

Hm = FI /P~ /~IP2  = ( m l / m 2 )  n (9 )  

Estimation Procedures 

Multiplicative Genetic Effects 

2 Substituting numerical estimates of Yo, Ym, ~ and H m 
in Eqs. (6)-(9) yields four equations in four unknowns but 

appears only in Eqs. (6), (7) and (8) and cancels out of 
the following ratios. From Eqs. (6) and (7) 

Vfm ~m 4m2 t n =  (10) 
~fo 2 + 2ml + 1 

and from Eqs. (7) and (8) 

2 F m 2 - 1  - I  2 
ag~ - 2n I- m J (11) i 

leaving three equations, (9), (10) and (11), to be solved 
for m2, mt and n. 

If a satisfactory estimate of Hm is not available but 
there is reason to believe that there was essentially no het- 
erosis exhibited in the Ft ,  either of the following assump- 
tions concerning the relative sizes of m2 and mt may be 
adequate for reducing the unknowns in Eqs. (10) and (11) 
from three to two. Assuming no dominance, by the crite- 
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rion that Bb i = 1/2(BBj + bbj), we have from Eqs. (3) that 
mx = (m2 + 1)/2. Substituting this value of m~ in eqs. 
(10) and (11) 

Vfm _ F 2 m  2 ] n  

7o -Lm: * 1_1 

and 

2 n r m 2 _  1 ]  2 Og ~ = 

 -Vo 2Lm2+l J 

(12) 

(13) 

Alternatively, following Charles and Smith (1939)in as- 
suming that individual gene effects (not just the single- 
locus genotype effects) are multiplicative makes m2 = m~. 
Substituting accordingly in Eqs. (10) and (11), yields 

~/m _ F  2ml ] 2n 
Vo _Lml + 1_ ] (14) 

and 

2 2 

%_._2 = 2 n F  ml - 1 ]  (15) 
Yo - 2  ira, , 13 

Exact simultaneous solutions of these non-linear ex- 
pressions cannot be obtained. However, approximate solu- 
tions, as good as desired, can be produced quite easily by 
successive approximation. We proceeded as follows in 
solving Eqs. (9), (10) and (11) for m2, ml and n. From 
Eq. (10) 

ln(Ym/Vo) 
n = ln[4m2/(m2 + 2ml + 1)] (10a) 

Using our estimates of Vf m and ~fo and trial values of m2 
and m~, a provisional value of n was obtained from Eq. 
(10a). This value of n along with the trial values of m 2 
and ml was then substituted in Eq. (9) to determine 
whether the H m value obtained was close to our experi- 
mental estimate. If not, the trial value of m~ was changed, 
new values of n and H m obtained from Eqs. (10a) and (9) 
and the process repeated until the Hm value found was 
sufficiently close to our experimental estimate. At that 
point values of ml and n had been found that, together 
with the first trial value of m2, would explain our estimates 
of Ym/Yo and Hm. These values were then substituted in 
Eq. (11) to determine whether our estimate of Ogo/Y o 2  -2  
would also be reasonable well satisfied. Of course it would 
be remarkable if that were accomplished in the first trial. 
If not, the next step was to repeat the entire process with 
a new trial value of m2 until a set of values for m2, ml 
and n was found that provided a good fit, by Eqs. (9), 
(10) and (11), to all of the experimental estimates. The n- 
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value of this set was, of  course, the one accepted as the 
proper estimate. 

Procedures are similar when only Eqs. (12) and (13), 
Pupa weight (flour beetles) Weight gain (mice) or Eqs. (14) or (15), are used because one of the assump- 

tions described above has been made concerning the rela- = = 
tive magnitudes of m 2 and ml .  Of course, in either case, Ym = 5640 Ym = 5909 Ogo = 0.33 ~o  = 0.48 
the approximation process requires less time because there 

m2 1.01 1.0096 1.0136 1.02 
are only two equations to be satisfied, ml 1 .00562 1.00536 1.0082 1.012 

a 941 900 4.53 4.54 

mates when heterosis were taken into account were as fol- 
lows. 

No epistasis 

When no epistasis was assumed the n was estimated in the 
usual ways. When, ignoring the observed heterosis, no 
dominance was also assumed, the estimation formula was 

fi = (~m - ~o)2/26~o (16) 

as outlined by Comstock (1969) and Park (1977). When 
dominance was not excluded, the formula employed was 

f l  = (~(m - -  ~ o  + I'[Ia/2)2/2Ogo (17) 

as indicated by Comstock (1969). In Eqs. (16) and (17) a 
caret is employed to indicate estimates. 

The Estimates 

Gene number estimates obtained using quantities shown 
in Table 1 are listed, according to trait and assumptions 
employed, in Table 2. As indicated in the table two esti- 
mates of  Ym (the ones provided by the S and H popula- 
tions, respectively) were employed in the case of  pupa 
weight. The estimate provided by the H population is con- 
sidered more appropriate because the larger v/m is proba- 
bly due to favorable alleles that had been lost from either 
$1 or $2 but were present in the H populations following 
the initiation of H~ and H2 from the $1 x $2 cross. In the 
case of  growth in mice, for which the estimate of  ego was 
less precise, results were obtained using estimates at the 

2 extremes of the range within which the true value of ego 
was believed to be contained. 

The estimates shown are similar, but not identical, in 
magnitude to the comparable estimates reported by En- 
field (1973, 1974) and by Comstock (1969, 1973). They 
differ partly because slightly different estimates of  Yo or 

2 (judged more appropriate) have been used in this case Ogo 
and partly because total response to selection had not 
been completely realized at the time of the earlier reports. 

It is apparent from the last two rows of Table 2 that 
when heterosis is assumed absent or very small, the choice 
between the two assumptions regarding the relative size of 
m2 and m~ is of  no practical consequence. The estimates 
of  m2, mt and ct that accompanied the gene number esti- 

The estimates of ~ were available from Eq. (6) once the 
estimates of m2 and n had been obtained. Note that the 
estimate of  a is, in terms of the multiplicative model, the 
estimate of the plateau that would have been reached in 
response to recurrent downward selection and that this is 
greater than zero even though response to upward selec- 
tion was greater than the initial average. 

Discussion 

The effect on gene number estimates of assuming multi- 
plicative rather than additive effects of  single locus geno- 
types is substantial (Table 2). It resulted in 50-60 percent 
decreases in the estimates obtained in this study. This was 
obviously to be expected because, assuming mi2 > mil > 
mio, the average multiplicative effect of single-locus geno- 
types, mi = fi2mi2 + filmil + fiomio, increases as the fre- 
quency of the favorable allele increases so that bb and Bb 
genotypes are replaced by BB genotypes. A consequence 
is positive interaction among the effects of  increases in 
frequencies of  favorable alleles so that the total effect of  
making favorable alleles homozygous is greater than the 
sum of their effect reflected in the additive genetic vari- 
ance when all allele frequencies are 0.5. This is in contrast 
to the situation when there is no epistasis and u-values 
(average effects of substituting favorable for unfavorable 
alleles in genotypes) are not functions of allele frequencies 
at other genes. 

The progressive increase in mi as qi increases is respon- 
sible also for the increase, for some time, in additive gen- 
etic variance in response to selection (for large values of  
the trait) that is initiated when allele frequencies are near 
0.5. Because Zj, the product of  all ~ ' s  except that for the 
j-th locus, see Eq. (4), is increased progressively as the q's 
approach 1.0, it is apparent from Eq. (5) that additive 
genetic variance will increase until the q's are large enough 
so that further increases in them will cause decreases in 
the values of q(1 - q) that are sufficient to more than off- 
set the increases in the Z 2,s. It is quite easily shown by 
substitution in Eqs. (4) and (5) that additive genetic vari- 
ance can continue to increase until allele frequencies have 
become relatively large. Assume, for example, 
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(1) Hardy-Weinberg frequencies of genotypes for all 
genes 

(2) No variation among genes in either m 2 or ml (re- 
member that m0 = 1.0) 

(3) That allele frequencies increase at the same rate 
for all genes so that q, though changing, does not become 
variable among genes and 

(4) That the values of  n, m2 and ml are those esti- 
mated for mouse growth (n = 81, m2 = 1.02, ml = 1.012) 

^2 
when ag o = 0.48 was employed. 

2 
Then ago continues to increase until the q's exceed 0.8. 
Because gene number estimates are substantially lower 

when multiplicative, rather than additive, effects are as- 
sumed the choice of model is not trivial. Two reasons, (1) 
total response to upward selection in excess of  average 
performance when allele frequencies are 0.5 and (2) an in- 
crease in additive genetic variance through a considerable 
portion of the time required to reach a plateau in response 
to upward selection, have been given for choosing the 
multiplicative model. The first of  these is not thoroughly 
compelling because individuals homozygous for large 
numbers of unfavorable alleles may either not survive or 
not reproduce. The second appears a more compelling rea- 
son. When there is reason to believe that, on average, dom- 
inance is not in the direction of the unfavorable alleles, the 
only explanation for such an increase in additive variance 
given additive gene effects would be a substantial initial 
excess of repulsion phase linkage disequilibrium, a state 
for which no good argument can be made on probabilistic 
grounds even when the performance of  the two parent in- 
breds is nearly equal. Published experimental evidence is 
understandably meagre. However, Moll et al. (1964) report 
estimates of the magnitudes, at the F2 and later (Fs and 
F12) stages, of the genetic variance in Design III experi- 
ments that would be affected in the same way by linkage 
disequilibrium as additive genetic variance. Because their 
experiments involved no selection, and hence minimal de- 
creases in q(1 - q), dissipation of repulsion phase disequi- 
librium would have had maximum opportunity to cause 
increase in the genetic variance in question. However, de- 
creases were more frequent than increases and statistical- 
ly significant increases were observed in only one of the 
seven traits of  maize that were studied. All things con- 
sidered, it appears that the multiplicative model should 
certainly receive attention when, as in our experiments, 
both phenomena discussed in this paragraph are encounter- 
ed. 

Wright (1952, 1968) pointed out that if gene effects, 
though additive, are variable in magnitude, the number es- 
timate obtained using the Castle-Wright formula is biased 
downward. For this and other reasons he chose to refer to 
the quantity estimated as the 'segregation ratio'. Com- 
stock (1969) noted that if all else were as assumed in the 
procedure that is appropriate when there is no epistasis, 

2 the quantity estimated is n/(1 + O2u/'82) where o u and 
are the variance and mean, respectively of  the u-values of  
genes affecting the trait. We have no comparable general 
expression for the bias due to variation of  m-values among 
loci when multiplicative effects are present and the esti- 
mation method described in this paper is employed. How- 
ever, we have by numerical examination found that the 
result again is downward bias. 

The estimates in Table 2 indicate that the magnitude 
of heterosis exhibited in the F1 generation should be 
taken into account if an adequate estimate of  it is available. 
It provides a non-arbitrary basis for assessing the size of  
ml relative to that of m2. With respect to both traits for 
which results are presented herein, the gene number esti- 
mate was somewhat larger when the evidence concerning 
heterosis was employed even though the amounts of  he- 
terosis were rather small. 

It is interesting that, in the case of mouse growth, the 
relative effect of using different estimates of ago was the 
same for all methods employed. It is obvious that this 
should be so for estimates provided by Eqs. (16) and (17). 
It is not so obvious (to us, at least) that the effect should 
have been the same when multiplicative effects were as- 
sumed. 

Our gene number estimates for mouse growth are much 
larger than those reported by Roberts (1966). The theory 
base for his estimates assumed no epistasis. Our estimates 
assuming no epistasis varied from 140 to 237, his varied 
from 2 to 20. Roberts used theory by Hill and Robertson 
(1966) to estimate 2Niu/o from the 'half-life' of response 
to recurrent selection. Here N = effective population size, 
i = the selection differential per generation, o = the pheno- 
typic standard deviation of the trait and u has the meaning 
used elsewhere in this manuscript. Figure 11 of Hill and 
Robertson (1966) shows the relations among half-life mea- 
sured in terms of N, 2Niu/o and initial frequency of the 
favorable allele. It provides a basis for estimating 2u/o 
when N, half-life and initial allele frequencies are known. 
Then estimates of 2u/o and heritability enable estimation 
of gene number (subject to assumptions that include addi- 
tivity of gene effects, independent assortment and the 
same u-values for all genes). We applied the method de- 
scribed and used by Roberts and obtained estimates in the 
range, 145-200, depending on the heritability estimate em- 
ployed. These are in line with other estimates (163 and 
237) obtained when additivity was assumed. Half-life as a 
multiple of  N was similar (0.45N) in our experiment to 
those reported by Roberts. However, because N was con- 
siderably larger in our experiment, our estimate of  2u/o 
was smaller (0.087) than those he obtained. Why his esti- 
mates of the proportionate effects (2u/o) of genes were 
from 4 to 10 times as large as ours is not easily explained. 
There is no obvious reason why large-effect genes should 
have been segregating in the populations from which his 



R.E. Comstock and F.D. Enfield: Multiplicative Genetic Effects and Gene Number Estimation 379 

data were obtained and not  in ours. Because effective pop- 

ulation size was only about 35 percent as large in his pop- 

ulations as in ours there was probably more linkage dis- 
equilibrium (see Hill and Robertson 1968) and while that 
would probably shorten half-life, thereby increasing the 

estimates of proportionate effects, it is far from obvious 
that the impact would be enough to account for the large 
difference between estimates from his data and ours. 
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